首页> 外文OA文献 >On enhanced hydrogen adsorption on alkali (Cesium) doped $C_{60}$ and effects of the quantum nature of the H2 molecule on physisorption energies
【2h】

On enhanced hydrogen adsorption on alkali (Cesium) doped $C_{60}$ and effects of the quantum nature of the H2 molecule on physisorption energies

机译:关于增强氢气吸附碱(Cesium)掺杂$ C_ {60} $和   H2分子的量子性质对物理吸附能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrogen storage by physisorption in carbon based materials is hindered bylow adsorption energies. In the last decade doping of carbon materials withalkali, earth alkali or other metal atoms was proposed as a means to enhanceadsorption energies, and some experiments have shown promising results. Weinvestigate the upper bounds of hydrogen storage capacities of $C_{60}Cs$clusters grown in ultracold helium nanodroplets by analyzing anomalies in theion abundance that indicate shell closure of hydrogen adsorption shells. Onbare $C_{60}^{+}$, a commensurate phase with 32 $H_2$ molecules was identifiedin previous experiments. Doping $C_{60}$ with a single cesium atom leads to anincrease in relative ion abundance for the first 10 $H_2$ molecules, and theclosure of the commensurate phase is shifted from 32 to 42 $H_2$ molecules.Density functional theory calculations indicate that thirteen energeticallyenhanced adsorption sites exist, where six of them fill the groove between Csand $C_{60}$ and 7 are located at the cesium atom. We emphasize the largeeffect of the quantum nature of the hydrogen molecule on the adsorptionenergies, i.e. the adsorption energies are decreased by around 50% for$(H_2)C_{60}Cs$ and up to 80% for $(H_2)C_{60}$ by harmonic zero-pointcorrections, which represent an upper bound to corrections for dissociationenergies ($D_e$ to $D_0$) by the vibrational ground states. Five normal modesof libration and vibration of $H_2$ physisorbed on the substrate contributeprimarily to this large decrease in adsorption energies. A similar effect canbe found for H2 physisorbed on benzene and is expected to be found for anyother weakly $H_2$-binding substrate.
机译:碳基材料中通过物理吸附进行的氢存储受到低吸附能的阻碍。在最近的十年中,提出了用碱金属,碱土金属或其他金属原子掺杂碳材料作为增强吸附能的方法,并且一些实验已经显示出令人鼓舞的结果。我们通过分析阴离子丰度的异常表明氢吸附壳的封闭,研究了超冷氦纳米液滴中生长的$ C_ {60} Cs $ cluster的储氢能力上限。先前的实验中鉴定出了Onbare $ C_ {60} ^ {+} $,具有32个$ H_2 $分子的相称相。用单个铯原子掺杂$ C_ {60} $会导致前10个$ H_2 $分子的相对离子丰度增加,相称相的关闭从32个$ H_2 $分子转移到42个$ H_2 $分子。密度泛函理论计算表明存在13个在能量上增强的吸附位,其中6个填充Csand $ C_ {60} $之间的凹槽,而7个位于铯原子处。我们强调氢分子的量子性质对吸附能的巨大影响,即对于$(H_2)C_ {60} Cs $,吸附能降低约50%,对于$(H_2)C_ {60,吸附能降低达80% } $通过谐波零点校正,代表通过振动基态校正离解能($ D_e $到$ D_0 $)的上限。物理上吸附在基材上的$ H_2 $的五种正常释放和振动模式主要是造成吸附能大幅度下降的原因。对于吸附在苯上的H2可以发现类似的效果,并且可以预期对任何其他弱结合$ H_2 $的底物也可以找到类似的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号